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Numerical Approximations in Heat Transfer Problems and

Usage of IBM 7090 Computer For Solutions

I. Introduction

The purpose of this paper is to furnish information necessary to

obtain numerical approximations to the solutions of certain heat transfer

problems by making use of a thermal model and related IBM 7090 computer

program developed by BBE and BCC. The solutions take the form of a time

history of temperature distribution. The problems concern heated structures

or components of quite general geometric configuration and material composi-

tion.

\ Material properties may be temperature dependent. Heating may

occur by convection, by radiation, or by conduction. In the case of aero-

dynamic heating, provision is made for a real gas boundary layer with auto-

matic determination of whether the flow is laminar or turbulent. The tra-

jectory and ambient atmosphere may be arbitrarily specified.

In section II, we consider a thermal model that consists of a

lumped parameter network of thermal capacitances and conductances. This

model may be thought of as arising from the replacement of the differential

equations of heat conduction and their boundary conditions by a suitable set

of difference equations or from the replacement of a continuous heat conduc-

tion system by a corresponding lumped parameter system on the basis of physical

considerations. Our goal here is not to discuss the limitations of the lumped

parameter model*, but rather to describe the equations which govern it. In

the appendices we give first the details of the computations involved in the

calculation of aerodynamic heating. Next, we give a criterion to evaluate

the stability of the calculations. Then, we show the difference equations. '/'

In section III, we consider the specification of this model via a

very simple but complete FORTRAN control program. The existence of a certain

*For an eKcellent treatment of the derivation of lumped parameter heat transfer
models see Dusenberre's Numerical Analysis of Heat Flow, McGraw-Hill Book Co.,
Inc., 1949.

-1-
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set of FORTRAN-FAP subroutines in the BCC Library (Nos. 11.02.01-11.02.12)

then makes direct liaison between the BCC Operations Project and the user

a relatively simple matter which requires virtually no knowledge of pro-

gramming on the part of the user. The dimensional units to be used in each

case are listed in Appendix D.

Given a specific problem, one proceeds by setting up the model

along the lines indicated in section II and specifying the model along the

lines indicated in section III. In section IV the printout format ij dis-

cussed. Finally, a typical example is carried through in detail in section

V. The last appendix gives the limitations on the size of the program and the

estimates which are to be used in computing the machine time.

II. The Thermal Model and Its Equations

The thermal models that we consider consist of networks of thermal

capacitances and conductances. In any model, to each end point of a thermal

conductance is assigned a number from 1 to 1000 called an index. Each such

point is called an indexed point and may have assigned to it a value of

thermal capacitance or a temperature prescribed as a function of time. In

any case the temperatures which are associated with the indexed point s, for

example, are designated T .. Similarly, the value of a thermal capacitances

associated with an indexed point r is designated Cr, and the value of a

conductance joining the indexed points r and s is designated by K . Inrs

general the values of each thermal capacitance, Cs, will be dependent on the

temperature, Ts; and the values of any thermal conductance Krs will depend on

T r,T , and time. By allowing this generality the thermal capacitances can

represent, over an extended temperature range, the thermal capacities of

pieces of solids; and the thermal conductances can represent the behavior of

the thermal conductivities of solids, of convective heat transfer, and of

thermal radiation.

Within the network at any time there will be a thermal flux between

each pair of points joined by a thermal conductance. The value of the flux,

qrs' from r to s, for example, is given by an apparently linear relation,

qrs rs (T -T). (1)



The Joh NoHpkins Un.nvity
APPLI HS PN I1|CS LANGRATORY 3.Silver Spring, Maryland

The linearity of this relation is truly only apparent, since K may bers
temperature dependent. To determine the total thermal flux,q,,into the

point s, it is necessary only to sum all the q's which have s for their

second index. This is expressed by writing

qs q rs (2)

r

Further, in a short period of time At, the total thermal energy

into the point s is qs . At. Consequently, if s is a point with which

a thermal capacitance C is associated, then the change in temperature ATs

in interval At is computed by the relation

q At
AT = ME (3)S C "

s

Here C is presumed to depend on the value of T at the beginning of thes s

time interval, the precise nature of this dependence will be discussed later.

If the temperatures of all indexed points are known at a time t

and if the values of the C and K are also known, then the relations (1),
5 s

(2), and (3) give the values of the temperatures of all indexed points which

have capacitances associated with them at a slightly later time (t + At).

At the remainder of the indexed points the temperatures at (t + At) are

prescribed or calculated directly as functions of time, so that by step by

step computations the temperatures can be obtained at all indexed points at

later times.

The general description of the thermal network must be completed

by prescribing the computation of the values of the conductances and capa-

citances. Of these elements the simplest in form is the thermal capacitance.

For any of these, say Cs, the defining equation is

C V (p C) (4)
5 5 Ps

where Vs is a prescribed constant having the dimensions of volume, and (P C )
is given either by a polynomial in T degree five or less or by interpolating

in a table, and has the dimension of thermal capacity per unit volume.
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The thermal conductances may be of any of several types. Of

these the simplest has the form

Krs rs rs

where A and L are the area and length respectively, and k is a thermalrs

conductivity which depends on temperature. In particular, k is given byrs
a polynomial of degree five or less or by interpolation in a table and is
evaluated at the average temperature, ½ (T r+T s).

A more complicated thermal conductance is a composite of two of

the simple types just discussed joined by a "contact" conductance. Here it

is convenient to introduce two additional network points (suppose r' and s')

at the ends of the contact resistance as is shown in the following diagram:

r r' st s

It should be noted here that the points r' and s' are not regarded

as indexed points since they are internal to a single conductance. Since

there are no lumped thermal capacitances associated with the points indexed

by r' and s', the thermal flux through each conductance must be the same as

the flux from r to s. Thus the relations are

"q rs q qrr' q r's qS's I

qrs rs (Tr rs)

qrr'- Krr' (T " Tr )

qrisI Kr's (Tr - T S,)

q' = I Ks's (Ts I TS)
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Together these lead to the formulation:
-1

K - ( +-- +-) (6)
rs Ksrrs

qrs qrs
Tr, M Tr - -Krr, Ts Ts + -Kts (7)

Here the contact conductance Kr's, has the same form as that given by

(5) except that A/L is replaced by A alone. As suggested by the

diagram K rr, is calculated from the mean of Tr and T r,,K rs , from that

of Tr, and T,, and Kss from that of T., and Ts.

In order to compute the value of a composite conductance K rs

the values of its component conductances must be known. These in turn

depend on the internal temperatures T , and T , as well as on Tr and Ts.

However, the values of Tr, and T., depend on Tr and Ts and the values of

the conductances. This poses an implicit non-linear problem for the com-

putation of Tr,, Ts,, and the value of the composite conductance. To

solve this problem with adequate accuracy at each time step the following

iterative procedure is used. The values of Tr, and Ts, at the beginning

of the last time step and the just calculated values of T and T at ther s

end of the time step are used to compute an approximating value for the

component conductances and thus for the composite conductance. From this

value of the composite conductance, Tr, and T a value of qrs ' and thus

new values of Tr, and TI, can be computed. These new values are then used

to recompute the values of the conductances. This procedure may be repeated

as many times as necessary in order to obtain good values of the composite

conductance and the internal temperatures.

A third type of thermal conductance that we consider arises from

thermal radiation. In this case qrs is given by

q aAFA F (T - T ) (8)
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where,

S- Stefan-Boltzmann constant

A - surface area of element in question

F A - geometric exchange factor

Fp (T r,T) = net emissivity factor between element in question and

surroundings. F• is evaluated at ½ (T ,Ts).
e~ rs s

In this case we may write qrs in the apparently linear form

qrs =a A FA F(T T) 'P(T ,T) '(T--T)

qsA ( r a rs s r a

where

3 2 2 3
P (Tr,T) = T3 + T T + T T2 + T3rs r r s r s s

In this way we may obtain K from the formulars

Kre M • A FA Fe (Tr,Ts) P (Tr,T) . (9)

Our final type of thermal conductance arises from forced convec-

tion. Here the conductance is calculated from a heat transfer coefficient

h and is given by
rs

K - A h (10)rs rs rs

The heat transfer coefficient itself is calculated in a more complicated

way than any of the quantities that have been dealt with up to the present.

The details of this computation are described in Appendix A at the end of

this report. For the present it is convenient to regard it as a function

which depends on time and on the temperature T • In the application of as

conductance arising from aerodynamic heating in the heat transfer model one

end point, suppose r, of each such conductance has the applied temperature

T aw. The calculation of this temperature is described in Appendix A also.r
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In applications in the model, the heat transfer conductances

usually occur along with conductances arising from radiation heat transfer

to the surrounding space. Here the radiation transfer has the special form

q = r Am 6(Ts) (T r)4 - T ) (11)

With the conductance given in the corresponding form:

Krs oA6(T) P (Tr 4,Ts) (12)

here T r is a temperature that corresponds to the effective temperaturer
of the surrounding space and C (T ) is given in tabular form or by a poly-

nomial. Tr may be defined as a function of altitude or time.
r

III. Specification of the Model

In this section we describe in some detail the input required by

the computer program which makes it possible for the IBM 7090 computer to

perform the vast amount of computation involved in the model of section II.

Other questions concerning the use of the program will probably

arise. Some of these questions, such as those relating to cost (Machine

Time) and the size of problem which the program is capable of handling

(Machine Storage), can be answered by referring to Appendix D. Other of

these questions will be best answered by establishing direct liaison with

BCC.

Input consists of a simple but complete FORTRAN control program

prepared by the user and a set of FORTRAN-FAP subroutines (Nos. 11.02.01-

11.02.12) available in the BCC Library. The control program must be prepared

on standard FORTRAN coding sheets which are obtainable from BCC.

There is a considerable amount of flexibility in the method of

writing the control program. For the sake of simplicity we describe a

method which requires a minimal knowledge of FORTRAN and leave it to

experience to suggest modifications.
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The structure of a typical control program is as follows:

* CONTROL STATmbENTS

DIMENS ION STATEMENTS

C cOMMENTS

LISTS

CALL SET

1 CALL TRAJ

CALL AMBATH

CALL FORCER

CALL FORCER

CALL FOR ALT

CALL FOR ALT

CALL AERO

CALL AERO
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CALL RAD

CALL RAD

CALL C&4 CON

CALL COM CON

CALL CON

CALL CON

CALL CAP

CALL CAP

CALL WRITE

CALL PLOT

CALL PLbI

CALL STEP

GO TO I

END
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The effect of this control program is to supply the FORTRAN MONITOR and

the various subroutines with the information they require and to sequence

the machine once per time step through the subroutines in the order in

which they are called starting with statement 1.

Reference to section II and Appendix A should clarify the

physical meaning of all the parameters that occur in the various CALL state-

ments, and reference to section V should clarify the form in which they are

written on the coding sheets as well as the interplay between these para-

meters and the LISTS. The definitions of all parameters in the various

CALL statements follows:

1. CALL SET (START, STOP, TEMPIN, I, INDEXl, Tl, --- , INDEXI TI)

START, STOP - Start computation at time START and stop computation at

time STOP.

TEMPIN,I,INDEXI,Tl,---INDEXI,TI - All thermal capacitors are initialized

to TEMPIN, with exception of those I thermal capacitors whose indices

are listed. INDEX J is the index of the Jth exceptional thermal capacitor

which is initialized to temperature TJ.

2. CALL TRAJ (FOFXM,XM,FOFXA,XA)

NOTE: The pair FOFX,X occurs in CALL TRAJ, CALL AMBATM, CALL FOR ALT,

CALL FORCER, CALL AERO, CALL RAD, CALL COMCON, CALL CON, and CALL CAP.

It is used to represent a function FOFX(X) in one of the following two

ways:

(i) to define FOFX(X) as the polynomial
N

FOFX(X) - L Axi

isso

write N for X in the CALL statement and write the following in the
data LISTS:

FOFX(l) - AN

FOFX(2) - AN_

FOFX(N+l) - A
o
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(ii) to define FOFX(X) as a table,write the following in the data LISTS:

X(l) N N.

x(2) -x

X(N+l) - XN

FOFX(l) = FOFX(X 1 )

FOFX (N) = FOFX (XN)

The values FOFX(XX 'are.'thef rdefined by linear interpolation,

in CALL AMBATM and by quadratic interpolation in all other CALL

statement s.

FOFXM,XM - This pair represents Mach number as a function of time.

FOFXA,XA - This pair represents altitude as a function of time.

3. CALL AMBATM (FOFXTO,XTO,PO,N)

FOFXTO,XTO - This pair represents ambient temperature as a function

of altitude.

PO,N - Ambient pressure is determined by writing in the data LISTS.

Po(l) - z1 = 0

PO(2) -a

PO(3) - Pl

PO(4) -¥

PO(5) -Z2

PO(6) - 2

PO(7) - P2

PO(8) -y2

PO(4N-3) - ZN

PO(4N-2) - aN

PO(4N-1) - PN

PO(4N) - 7N

where the relationship between the a, P,y and Z are as per Equations A5

and A6 of Appendix A.
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4. CALL FORCER (INDEX,FOFX,X)

INDEX - This is the index of the thermal capacitor whose temperature

is to be set to T.

FOFX,X - This pair represents T as a function of time.

5. CALL F0RALT (INDEX,FOFX,X)

INDEX - This is the index of the thermal capacitor whose temperature is

to be set to T.

FOFX,X - This pair represents T as a function of altitude.

6. CALL AER0 (ID,I,FLONOS,FOFXLM,XLM,FOFXLP,XLP,INDEX1,GEONO1,POSNO1,---,

INDEXI, GEONOI, POSNOI)

ID - This is aerodynamic heat transfer block identification number.

I - This is number of thermal capacitors in this block.

FLONOS - This is list of 5 numbers which describe the flow for this block.

They should be presented in the data LISTS as follows:

FLONOS(l) = Re cr

FLONOS(2) - a

FLONOS (3) - a

FLONOS (4) = Ca

FLONOS(5) = C
•t

FOFXLM,XLM - This pair represents the ratio of local Mach number to

ambient Mach number as a function of ambient Mach number.

FOFXLP,XLP - This pair represents the ratio of local pressure to ambient

pressure as a function of ambient Mach number.

INDEXJ,GEONOJ,POSNOJ - This triple represents the index number, surface

area A, and characteristic length X respectively of the Jth thermal

capacitor in this block.

This CALL AERO format must be supplied for each heat transfer block.

7. CALL RAD (INDEXI,INDEX2,GEONO,FOFX,X)

INDEX1,INDEX2 - This pair represents the indices of the two thermal

capacitors which are exchanging heat by radiation.

GEONO - This is the exchange factor PA multiplied by the surface area A.

FORX,X - This pair represents emissivity,e, as a function of temperature.
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8. CALL COMCON (INDEXI,INDEX2,GENOI1,GEONO2,GEONO3,FOFX1,Xl,FOFX2,,X2,

FOFX3,X3)

INDEXl,INDEX2 - This pair represents the indices of the two thermal

capacitors of this composite (contact) conductance pair.

GEONO1,GEONO2,GEONO3 - This triple represents area to length ratio

(A/L) 1 , area A, and area to length ratio (A/L) 2 respectively proceeding

from the thermal capacitor of INDEX1 to the thermal capacitor of INDEX2.

FOFX1,X1,FOFX2,X2,FOFX3 - These three pairs represent respectively,

the conductivities k as functions of temperature proceeding from the

thermal capacitor of INDEX1 to the thermal capacitor of INDEX2.

9. CALL CON XINDEX1,INDEX2,GEONO,FOPX,X)

INDEXI,INDEX2 - This pair represents the indices of the thermal capacitors

of this conductance pair.

•GEONO - This represents the area to length ratio A/L.

FOFX,X -This pair represents conductivity k as a function of temperature.

10. CALL CAP (INDEX,GEONO,FOFX,X)

INDEX - This is the index number of this thermal capacitor.

GEONO - This is volume V.

FOFX,X - This pair represents specific heat pcp as a function of

temperature.

11. CALL WRITE (I,TIMEl,TIME2,---,TIMEN)

I = This is the total number of complete printouts. A complete print-

out consists of all aerodynamic and trajectory information and the

temperatures on all thermal capacitors and contact surfaces which

differ from TEMPIN. Such printouts are meant for gross checks and

should be used sparingly.

TIMElTIME2,---,TIMEN) - The numbers 1,2,---,N represent the times at

which complete printout will occur.

12. CALL nLoT (ID,DELTE4,I,INDEX1,---,INDEXI)

ID - This is the identification number of this PLOT group.

DELTD( - A card is punched each time the temperature of the thermal

capacitor whose index is INDEX1 changes by DELTD4. The card deck result-

ing from a complete run may be sorted on ID (columns 1-4) and then tabu-

lated to obtain a printout of X-Y plotted to obtain a graph of temperature

(columns 9-12, 13-16,---,69-72) versus time (columns 5-8).



Thv•.Jdwve MeeIne Ual~vwak
APPIse PYNVW LAP*TSUY 14.51w. Iplg M~urva•

I - This is the number of thermal capacitors in this PLOT group.

INDEXl,---,INDEXI - 'ThebeIihdictes::repTesait the indices of the

thermal capacitors whose temperatures are to be punched.

13. CALL STEP

This is a sequence instruction for the computer to re-start, timewise,

with the solution of the next set of finite difference equations.

IV. Printout Format

The sheets of printout produced in the problem run contain the

history and principal results of the analysis. Here are recorded the

capacitance temperatures designated for printout and the contact tempera-

tures that appear in those composite resistances that hive been designated

for printout.

Whenever aerodynamic heating is included in a heat transfer model

it is essential t3 have some record of the principal quantities which in-

fluence this mode of heat transfer. To provide this information the values

of the following quantities are provided at each printout time: missile

altitude z, missile Mach number MN, ambient pressure po, and ambient tempera-

ture T . In addition to this, characteristic information is printed out for

each heat transfer block (CALL AERO statement); here the recorded quantities

are the local Mach number M, local pressure p, local air temperature T,

local Reynolds number, adiabatic wall temperature Taw, and the heat transfer

coefficient, normalized by replacing x, the characteristic length, by 1; i.e.
1-4

to get h, divide the values printed out by x .

The program also has a subroutine available which enables output

capacitance temperatures to be plotted as functions of time on BID X-Y

plotters. The complexity of a given thermal problem, operator experience,

time available and computer budget money available dictate the best use

that can be made of the program. To help clarify the discussion a sample

problem is included in the next section.
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v. EXAMPLE

Figure 1 shows a wedge type airfoil made of stainless steel #347.

It is seen that the airfoil has three webs. These webs are made of stain-

less steel #347. They are of 0.051 inch thickness. The skin thickness of

the airfoil is 0.040 inch. It is assumed in this problem that the vertex

angle of the wedge is 4 degrees and that one surface is at a fixec angle

of attack of 4 degrees with the airstream, while the other surface is in

line with the airstream. Temperature distributions are desired on all skin

surfaces and webs during a prescribed flight pattern. It is recommended

that the reader uses the FORTRAN sheets at the end of this report in order

to follow through this sample problem.

Geometry

Figures 2 and 3 show a convenient method of disecting the physical

airfoil into a lumped parameter system of capacitors.

TRAJECTORY FUNCTIONS

To define the trajectory, the altitude and free stream Mach

number are prescribed as functions of time under the TRAJECTORY FUNCTIONS

heading, page 2. They appear as functions Fl and F2.

AMBIENT ATMOSPHERE FUNCTIONS

It is seen in Appendix A, Eq. (A3), that in order to evaluate the

expression h, the local flow conditions (pressures and velocities that exist

immediately outside of the boundary layer), must be determined. These, in

turn depend on the flight trajectory of the airfoil and on the distribution

of ambient pressure and temperature wlth altitude. These last quantities

are referred to under the AMBIENT ATMOSPHERE FUNCTIONS heading. Function F3

describes the variation of ambient temperature with altitude. The function

F4 describes constants to be used in the computation of ambient pressure by

functions of the form given by Eq. (AS) of Appendix A. The order of listing

these constants is as follows.

1st, list lowest altitude of the trajectory

2nd, list a

3rd, list P which satisfy Eq. (A5) for ambient pressure in the lowest

S4th, list Tito intermediate altitude range.4th, listey
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5th, list an intermediate altitude of the trajectory

6th, lista

7th, list P which satisfy Eq. (A5) for ambient pressure in the intermediate

8th, list I to high altitude range.

9th, list a high altitude of the trajectory

10th, list;G

11th, list • which satisfy Eq. (A5) for ambient pressure above this high

12th, list a altitude

FLOW NUMBERS

As may be seen in Eq. (A3), in order to evaluate the coefficient of

convective heat transfer h, the constant Ca and the exponent a have to be

specified. The constant Ca is dependent on the type of flow existing on the

surface of investigation, i.e., flat plate, duct or cone, and on the transi-

tion Reynolds number which indicates when the flow changes from laminar to

turbulent. The exponent is solely dependent on the transition Reynolds number.

Consequently, under the FLOW NUMBERS heading, the transition Reynolds number

is specified. It is followed in order, by the value of a for Reynolds number

less than or equal to the critical value, the value of a for Reynolds number

greater than the critical value, the value Ca for Reynolds number less or

equal to critical, and the value of Ca for Reynolds number greater than critical.
6In our sample problem we consider flat plate theory in which we assume R -l.5x106,. e

a - 0.5 laminar, a-0.8 turbulent, Ca - 0.332 laminar, and Ca - 0.0265 turbulent.

The above constants and exponents appear as functions F5.

LOCAL FLOW

The local flow conditions are obtained by the presentation of the

ratio of local pressure, p, to the free stream pressure, p0, and ratio of

local Mach number, M, to the free stream Mach number, Mo, as functions of

free stream Mach number, M . In the case of elements 1, 2, 3, 4, 5 of theo

airfoil it is assumed that the local Mach number and the local pressure are

the same as the respective free stream Mach number and free stream pressure.

Therefore, the ratio of unity appears as function F6. For the other capaci-

tances the ratios are presented in the form of polynomial functions F7 and

F8. The formM (or p) - f (Mo) - an xn + an- 1 xn-1 ... a x 2 + a x + a is
n n- 2 1 0
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used in which the coefficients aa 1  - a are such that the continuous

function f(M ), closely circumscribes the discrete points M/M (and p/po)

for which experimental data is available. The ratios M/M0 and p/p 0 can be

listed in tabular~form as functions of MH if sufficient data points are

available. In that case, a quadratic interpolation is used between data

points.

EMISSIVITIES

Under this heading, the effective emissivity of the exterior skin

of the airfoil is listed as F9. In the sample problem it is assumed that

the emissivity remains at the constant value of 0.8 at all skin temperatures.

THERMAL CONDUCTIVITY and THERMAL HEAT CAPACITANCE

As was indicated in Section II, the thermal properties of each

capqcitance and conductance must be specified as functions of temperature.

For the properties of this sample problem, the thermal conductivity k, and

the thermal heat capacitance pCp are listed as polynomial functions of

temperature of lst and 3rd degree, respectively. They appear as functions

F10 and F12, respectively, on page 6 of the FORTRAN sheets. These poly-

nomials were selected by examining the proximity of the functions with the

discrete points from which they were generated. In the past, these poly-

nomials were generated on the IBM 650 computer. At present BBE has a

library of such polynomials for a great variety of metals and non-metals.

CALI SET Statement (FORTRAN page 7)

In order for the computations to be carried out it is necessary

to specify the flight time at which to initiate the program and the flight

time at which to cease such. This appears as 0 and 100, respectively in

the CALL SET statement. This information is followed by the initial

temperature that is assigned to each capacitance. In the present case

this appears as 560. If there is radiation by external surfaces to space,

as in the present case, it is necessary to list the temperature that is to

be assigned to space. In the present case capacitor 1000 refers to space,

and its temperature appears as 517. If the temperature of space varies with

altitude (or flight time), it is necessary to state the initial temperature

of space in the CALL SET statement and in addition, it is necessary to list
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the variation of the space temperature either with altitude or with time.

The former would be called out by the CALL F0RALT subroutine, while the

latter by the CALL FORCER subroutine. See parts 4 and 5 of Section III.

CALL TRAJ Statement

The CALL SET statement is followed by the CALL TRAJ statement.

The latter calls out the Mach No. Fl vs. time FlT, and altitude F2 vs.

time F2T functions.

CALL AMBATM Statement

The CALL AMBATM statement follows the CALL TRAJ statement. It

calls out the ambient temperature F3 vs. altitude F3Z functions and the

polynomial function F4 which describes the pressure as a function of

altitude. The degree of the polynomial is listed after the polynomial

function F4 in the CALL AMBATM statement. This is necessary in order for

the computer subroutine to introduce all of the polynomial coefficients into

the program run.

CALL AERO Statement

The CALL AERO statements specify the computations for the con-

ductances and adiabatic wall temperatures which arise from aerodynamic heat-

ing. Each statement describes a heat transfe- block, consisting of separate

conductances driven by the same adiabatic wall temperature, computed from

the same local flow conditions and reference temperature T', radiating to

the same space temperature, but having different areas, reference lengths,

and emissivities. Each block is given a block number. Blocks are numbered

in consecutive order. Adjacent to the block number in the CALL AERO: state-

ment is a number which states how many conductances are described by the

block. Next to this number the function F5 from the FLOW NUMBER heading,

appears. This is followed by the pertinent LOCAL FLOW functions F6 or F8 and

F7. It is important to note that the function describing the local Mach No.

has to be listed first, and is always followed by that function which describes

the local pressure. Again, these functions are followed by the degree of the

polynomial. Next, the most representative element - element 6, in the sense

of thickness and material properties is listed. This is followed by the
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2
aerodynamic surface area - 0.0416 ft , and in turn by the characteristic

length - 0.1408 ft. Then elements 1, 2, 3 etc. are defined until all

elements of the heat transfer block are described.

The temperature of that capacitance which appears first in the

CALL AER0 statement, is used as the Tw in Equation A2 to evaluate T' for

the entire block. Otherwise, the order in which the capacitances are

listed within the block is of no importance.

CALL RAD

A sample page of the CALL RAD statement is shown on FORTRAN

Sheet 8. Here, the radiation interchange between exterior skin surfaces

and space is considered. First is listed the element, then the identifica-

tion number for space, then the element surface area. In turn, the emissivity

function F9 is listed, and in turn, is followed by the degree of this poly-

nomial which is zero.

CALL COMCON

A sample page of the CALL C0MCON Statement is shown on FORTRAN

Sheet 9. In the region where heat conduction from the surface elements

to the webs is considered, the composite conductance technique described

in Section II is applied. The identifying elemental numbers are listed as

1, 2, . Then, the A/L ratios are listed in the following order: first,

that A/L ratio which pertains to element 1, then a large number 1 x 109 to

make the contact resistance 0, then the A/L ratio which pertains to element

2. In turn, the polynomial function F10 which describes the thermal con-

ductivity of the material of element 1 and its degree are listed. This is

followed by the number 1 which is a multiplier for the large number previously

mentioned. Thus, the product is a large number and this makes the contact

resistance 0. Lastly, the polynomial function describing the thermal con-

ductivity of element 2, and its degree are, respectively, listed.

CALL CO

An illustrative sheet of the CALL CON'rstatements is shown on

FORTRAN Sheet 10. The order of listing these statements should now be

apparent. The two identifying capacitance numbers are listed, and are
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followed by the A/L term, and in turn, by the function describing the

thermal conductivity, and the degree of the polynomial.

CALL CAP

An illustrative sheet of the CALL CAP statements is shown

FORTRAN Sheet 11. First is listed the capacitance number, then the

volume in cu.ft., then the heat capacitance pCp (in the units of BTU/ft 3 -_R)

F12 polynomial function, and finally the degree of the polynomial.

CALL WRITE

Here are written the flight times at which the temperatures of

the capacitors is to be printed out. First, is listed the total number

of time steps 33 for which printeout is requested, then the times at

which print-out is desired are stated, i.e., 0., 1.5, etL.

CALL PLOT

A subroutine exists which enables output temperatures to be

punched on cards which, in turn, may be used to obtain X-Y plots. See

part 12, Section III. This procedure is not described here as it has

been found more convenient to plot the temperatures by hand.

CALL STEP, GO to 1. END

This is the information necessary for the computer to continue

timewise with the solution of the next set of finite difference equations,

and continues until the expiration of the flight time.

Results

Figure 4 shows a typical print-out page of this sample problem

with the proper identifications. Though these temperatures appear in

degrees Rankine, the program has recently been modified so that tempera-

tures now are printed out in degrees Fahrenheit. The pressure is expressed

in pounds per square foot, and the altitude is expressed in feet. The
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normalized heat transfer coefficient h' when divided by x is expressed

in BTU/ft 2-sec-*R units. (This is the convective heat transfer coefficient h.)

The results of this problem are presented in the form of plots

of temperature as a function of distance from the leading edge at various

instants of time for both sides of the wedge. In addition, a plot of

temperature vs. time is presented across one of the webs. These plots

are shown in Figures 5, 6 and 7. It may be seen that temperature drops

occur for the surface elements close to the web. This is due to the heat

sink effect of the webs.

It is hoped that the above sample problem has sufficed in intro-

ducing the reader to the BBE-BCC heat transfer program. A more comprehen-

sive understanding will come about in the actual usage of the program.
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APPENDIX A

In the main body of this memorandum we have referred to a

calculated heat transfer coefficient and accompanying driving tempera-

ture. This appendix sets forth the manner in which these quantities

are calculated.

The heat transfer coefficients that are used are based on

a formula of the form

= CVR (Al)e r x

in which C is a constant, R is a Reynolds number, P is the Prandtle r
number for air, k is the thermal conductivity of air, and x is a length.

In our applications we will compute these quantities from "local flow"

pressures and velocities, i.e., those which exist immediately outside the

boundary layer, and from an effective temperature T' given by the formula

V - TV + Va (1 + OaM2) T , (A2)

where PV,, and Oa are constants, M and T are local Mach number and

temperature respectively, and T is the temperature of the surface tow

which aerodynamic heat transfer takes place.

By using the perfect gas law and associated specific heat

relationships

£ . gRT

C C+ R
p v J

"C ¥(l ) ) , C' p MY-1 .

the definition of Reynolds number and Prandtl number

R
e

PC

r kI
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the Sutherland expression for the viscosity of air as a function of

temperature.

and the expression (A2), the values of h can be obtained from expression

(Al) as follows,

Pvx p vx
R - -- -fe I gRT'jI

and

P P Y-1 J
r r

Therefore,

h = C (pv)ax a-(gR)-'(Tt) aI-a [Pp'(Tt &R' (Tt)a r J (T' ) -

By collecting terms,

C 1-a-p aa-1. 1a (Ta)h " (gR) l''( X ji 'l'(T') 7(T')-1')]"

Now, by introducing the Sutherland expression the expression for h

becomes,

h =Ca (pV) &x '12- ''1 (T') -CLr(T' T' (3

Here C., J, o g and R are constants, p is the local pressure, v is

the local velocity, x is a length, T' is given by (A2), Tc is a

constant temperature, and yis the ratio of specific heats for air. In

the expression (A3) it may be observed that the entire quantity within

the braces is a function of T' alone and its value is completely determined
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when the variations of P and y as functions of temperature are prescribed.r

Here we will calculate y and P from approximations by fifth degree poly-r

nomials over the range of interest.

In order to evaluate the expression for h, the local flow condi-

tions must be determined. These in turn depend on the trajectory of the

missile flight and on the distribution of ambient pressure and temperature

with altitude.

We will describe the variation of ambient temperature, T0 , with

altitude, z, as a continuous piecewise linear function of altitude, i.e.,

T 8 8 + k z, zi_ <_, z -,5i,), (A4)

where 6 aaid k are constants. Distributions of ambient pressure, P

hydrostatically compatible with linear temperature distributions are of

one of two forms, either

Po r a[ + (z -z' ) ] i zi- z (A5)

or

P = ia exp [Pi (z - z'-) ] , S '' z' (A6)

The first is compatible with a non-constant linear temperature distribution

from z.1' to z,, while the second corresponds to an isothermal temperature

distribution over the same interval.

To define a trajectory with sufficient accuracy for most heat trans-

fer purposes the altitude z and free stream Mach number, Mo, must be prescribed

as functions of time. These are given as continuous piecewise linear func-

tions of time. Such a function is completely defined when the coordinates

are given for its initial point, for its final point, and for all "corners"

at which the slope of the function changes.
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The local flow conditions can then be obtained provided that the

ratio of the local Mach number, M, to the free stream Mach number, M and0

the ratio of the local pressure p, to the free stream pressure, pop are

prescribed. Here we will list these in tabular form as functions of free

stream Mach number. or as polynomial functions of M .
0

The remainder of the local flow conditions, i.e., the local

temperature, enthalpy, and velocity are to be computed from the relations

H Y (+ 2 - H ( H(T) ) M2 (A7)
2J +-0(T 2J o o o

and

v = (gRTy(T) H2 ] . (A8)

Here H is the enthalpy and R the "gas constant" for a pound of air and J is

the conversion factor from energy in mechanical units to energy in thermal

units. We will approximate H(T) over the range of interest by a polynomial

of fifth degree.

Returning to the expressions for the heat transfer coefficient and

T', it will be noticed that several constants have been given the subscript

a, the exponent in (Al). The purpose of this notation is to indicate that

during the course of the computations a may be changed, and along with it

the constants indexed by it. In particular we will change a when the local

Reynolds number exceeds a specified critical value associated with transition

from laminar to turbulent flow. The local Reynolds number is calculated

from the formulas

R = OvX (A9)
e I

p M (AlO)RgT

ff M o T + T (All)
c

where p, v, and T are local flow quantities.
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The temperature which acts as the source or driving temperature

for aerodynamic heat transfer, i.e., the "adiabatic wall" temperature, is

computed on an enthalpy basis as follows:

H H (T) + r. & T Y (T) (A12)
aw ~ 2J

T T (Ha)aw aw,

in which r. is a recovery factor and T(H) is the function which gives air

temperature as a function of enthalpy. This last function can be approxi-

mated over the range of interest by a polynomial of degree five.
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APPENDIX B

Stability

While there is available no exact treatment of stability for the

type of equations that we consider in our heat transfer model, it is reason-

able to expect (and experimental results bear this out) that the same criterion

that is sufficient for stability in those cases which can be treated exactly

will be suitable here. Briefly, this criterion is that the inequality,

Ci

At < ; (Bl)

K ij

hold for all points j which have capacitance associated with them. Here,

of course, the sum is taken over all indices i which are connected to j

by non-zero capacitances.

This inequality may be given the following physical interpretation:

If the values of the conductances and capacitances in the network are calcu-

lated for any point j for the actual temperature distribution that occurs in

the model at a given time, then the time step allowable at that time is such

that even if the surrounding temperatures were set equal to zero the heat that

would flow out of C in the time At, i.e., i Kij Tj At, would not be

sufficient to cause the temperature Tj + AT1  to become negative. In this

form the criterion (Bl) may be reg!rticd as an expression of the second law

of thermodynamics. In (ur case the quantities C and Kij are functions of

temperature and are thus not known before the analysis is completed. This

means that in order to evaluate the stability of the problem, we must make

some a priori estimates of the temperature distributions that are expected.

The machine program has been set up so that if we set START time =

STOP time in the CALL SET statement a one loop computation will result and

a complete printout plus two lines:

CRITICAL INDEX No. = IIII

DELTIM - 0. XXXXXXXXE ± XX

will be indicated. A hand computation of At for thermal capacitor IIII

should now be made with equation (Bl). If there is more than a 10% difference
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between this hand calculated At and the DELTIM computed by the machine a

non-diagnostic error in the control program exists.

An estimate of the number of time steps required to compute from

START to STOP is furnished by

N - STOP-START
DELTIM
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APPENDIX C

BBE-BCC Finite Difference Heat Transfer Equations

The Fourier differential equation which expresses the rate of

flow, or flux, of heat through a given surface element in the direction

of its normal is proportional to the normal derivative of the temperature;

that is,

~~ - -k dA,()

where dA is the area of the surface, and k is the conductivity. Then if

V is a volume enclosed by a surface S, the rate of gain of heat by the

volume V is

p- k ds k V TdV (2)

ff an s f ff . v d

V

where the operatorV (read "del") is defined as

and 17. k7T is a scalar product called the divergence of kVT.

But, if p is the density and C the specific heat of the material involved,

the rate of gain of heat is also given by

(P US a. V )T d V, (3)

V
and so

fff kV7 - at d V- 0 (4)

V
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But this is true for any volume V, so the integrand itself must vanish for

every point in the material; thus we arrive at the heat equation,

a(pC )T""7. kV7T W at (5)

or
3Z L aT 1 a(pC p)T

- [k- g -X- - (6)')-X ax1  at
i-il

This is a partial differential equation which governs the flow of heat by

conduction in a homogeneous or non-homogeneous, isotropic or anisotropic

medium which is free of sources and sinks. One method of approximating

Equations (5) or (6) for conduction in one-dimension is by the following

finite difference equation,

k [ ttx +Ax § Ttj + kx Tt'xAx;Ttx
1L A x 2 Lx 2

(7)
(PCp) Tt+At'x - (0C ) Ttx]

At

where k1 = f (Tt,x+AX + T tx)

k2 = f (T t,x.x + T tx)

PCp M f (t,x)

This may be shown pictorially as follows:
ItAxAx Aq AxiAx Ax __

At
-Att6

t 4  Att3  At

t 
Att2t•••t At

t I xL 3 x ý X t " X
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Here for a finite time interval At, the term AT/Ax is expressed in terms of

conditions at the beginning of the time interval. Therefore, this difference

equation is called a forward difference equation. (Central and backward

difference equations are also possible to construct, but will not be the

subject of this Appendix.)

It is seen that with the above equation the temperature at any

point x, can bp found at a future time t+At provided only that a history of

the present temperature of the point x,and neighboring points x+Ax and

x-Ax is known. However, this equation holds only for conduction in a

medium which is free of sources and sinks. If the desired internal tempera-

ture is that of a point which is adjacent to a boundary point, i.e., point

x2 next to boundary point xi, then it is necessary to know the temperature

of point x1 at a previous time. For example, in order to evaluate the

temperature of point x2 at time t 3 by Equation (7), it is necessary to know

the temperature of element x1 at time t 2. This is found by rewriting

Equation (1) in the following form,

(L k LI. (8)dA L F) n •

rad,

conv'
cont.res.

where 2A now refers to the heat applied at the surface of x by convection
dA 1

and/or radiation or contact with some other medium i.e., contact resistance.

Writing Equation (8) in a finite difference form leads to the following,

(Tx2Vt2 " Txlt2 )
q (xl,tl,t 2 ) = - k (TtiXp) 2 1 x(9)

cony.
cont.res.

If Z q is known then the only unknown parameter in Equation (9) is T

Therefore, T is evaluated. It is then used in Equation (7) to evaluatexl ,t 2

Tx2 at t 3. If Eq is not known, it is always expressed in a form in which

it is linearly dependent on T xlt2. Therefore, Equation (9) can still be

solved for T . This linearization is somewhat demonstrated by Equations

(5), (6), (9), (10), and (12) of the text. The additional necessary information
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is that in the case of a non-linear equation such as Equation (8) of the

text, the non-linear part K rs is always evaluated at a previous time instant,

i.e., in the above discussion Krs would be evaluated at t.V
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Dimensional Units

Since the quantities involved in the heat transfer calculations

involve dimensional quantities it is necessary to establish the dimensional

units. Throughout, the English system of units is used, i.e., foot, pound,

OR, BTU, etc. Time by itself is always in seconds, but when stating thermal

quantities such as conductivity we shall, for convenience, use hours.

The following table lists the units used for all quantities that

must be listed on the problem sheets or appear on the printout sheets. (Since

the completion of the included sample problem a modification has been made in

the computer program whereby temperatures are printed out in degrees Fahrenheit

rather than degrees Rankine. However, input temperatures still have to be listed

in OR.)
Table of Dimensional Units

Quantity Dimension

Initial time, t secondo

Initial Values OR

Time step, t second

Atmosphere:

Gi lb ft1

Sft 
-1

Yi non-dimensional

z i ft
8 i OR

ki OR ft1

z!z ft

Specific Heat, pcp BTU ft R

Volume, V ft 3

Area, A ft 2

Area/Length, A/L ft

Conductivity, k BTU hr 1 ft1 ORl

Stefan'Boltzmann constant,, BTU hr 1 ft"2 R-4

Exponents, a non-dimensional

Heat Transfer Constants, C a non-dimensional

Characteristic Length, x ft

Heat transfer Coefficient, h BTU sec - 2 ft"2 .R'I

Temperature, T OR or OF

Geometric exchange factor, FA non-dimensional

Net emissivity factor, F6 non-dimensional
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Machine Program

Program Restrictions

(1) Thermal capacitor indices must not exceed 1000.

(2) There must be no more than 20 CALL AERO statements.

(3) There must be no more than 500 CALL COMCON statements.

(4) There must be no more than 50 CALL PLOT statements.

(5) There must be no more than 16 capacitors in any CALL PLOT statement.

Machine Timinz

The machine time may generally be estimated by multiplying the

machine time per time step by the number of time steps required to compute

from START to STOP. (See the last part of Appendix B on how to estimate

the number of time steps.) The machine time per time step may be estimated

by multiplying the time required by each inner loop subroutine by the number

of times it is called and summing over all inner loop subroutines.

Subroutine Name Time

FORCER 1 milli-second

AERO 20 milli-seconds

RAD 1 milli-second

C0MCON 5 milli-seconds

CON 1 milli-second

CAP 1 milli-second

Machine storage Space Requirements

(a) It will generally prove most convenient to use BCC Library Subroutines

11.02.01-11.02.12 as a package. In the somewhat unlikely event that space

becomes a problem, the following information may be useful:

Number Name Locations

11.02.01 SET 93
11.02.02 TRAJ 40
11.02.03 AMBATh 150
11.02.04 FORCER 40
11.02.05 AERO 670
11.02.06 RAD 85
11.02.07 COMCON 100
11.02.08 CON 65
11.02.09 CAP 40
11.02.10 WRITE 300
11.02.11 PLOT 170

.11.02.12 STEP 140

The 11.02.01-11.02.12 package also includes BCC Library Subroutines DECIDE,

PIFK and PIF2. The package uses 6174 COMCON locations.
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(b) Each CALL statement in the control program requires a certain number of

locations depending on the type of CALL statement.

Type Locations

CALL SET 5 + 21

CALL TRAJ 5

CALL AMBATM 5

CALL FORCER 4

CALL AERO 8 + 31

CALL RAD 6

CALL COMCON 12

CALL CON 6

CALL CAP 5

CALL WRITE 2 + I

CALL PLOT 4 + I

CALL STEP 1

I
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This addendum is included in order to instruct the reader in some

parts of the Applied Physics Laboratory heat transfer program which need

particular care. The critical aspect of the information listed below has

been made evident to the BEE heat transfer section by its experience with

numerous computer analyses over the past year. The problems that may arise

in a computer program run, neglecting obvious technical errors, may be

broken into three categories:

1. Insufficient information to obtain adequate representation of data

by interpolation. This problem usually arises as a result of the

fact that with the exception of the AMBATM temperature function, all

tabular functions are interpolated by quadratic equations.

Example:

Suppose the following altitude z is presented as a function of

time t,

z F2(l) = 0 . F2V(l) N .

z2 F2(2) = 2 • F2V(2) - 0 . t

z3 F2(3) = 10 . F2V(3) = 1 . t2
*. . . . t3

zN F2(N) 1 100000.

F2V(N+l) 100. tN

where the quadratic equation

z =at2 + bt + c

is used.

At t-t 1 - 0, z, -0 therefore c -0

at t = t 2 -1, z2 2 therefore,

2 = a(l)2 + b(l) therefore,

b-2 -a

at t - t 3 - 2, 10 - a(2)2 + (2-a)(2)

5 - 2a + 2-a

therefore, a - 3 and b - - 1,

and z - 3t - t.
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Now to find the minimum value of z in the interval t1 to t 3 , differentiate

z with respect to t and set equal to zero.

dz
dT- 6t - 1 - 0;

1
therefore, t - 6

2
and z -3- - 66 6

12

Since, no ambient temperatures and pressures are listed for

negative altitudes, the computer will give faulty results. Had more

altitude data been given in the time interval from t1 to t 3 then no

negative z values would occur in this time interval. Therefore, the

machine run would be good. In conclusion, be generous with data at

the beginning, at inflection points and at ends of functional values.

The best way of checking out a heat transfer program is to allow the

computer to initially make only a few seconds of flight time analysis.

That is in the START and STOP of the CALL SET statement, make START

0 seconds and make STOP, say, 2 seconds. That way, if something is

wrong in the input information corrections can be made without wasting

much computer time.

2. Inherent limitations of convective heat transfer equations. The

T' - Colburn method of evaluating the coefficient of convective heat

transfer is best suited to free stream Mach numbers of 5 or less.

This is the method built into the Applied Physics Laboratory program.

Above Mach 5 the Van Driest method of evaluating h is more accurate.

Also , the equations for h must be modified for heat transfer at stagna-

tion points. This is because of the appearance of the characteristic

length xl a in the denominator of the equation for h.

3. Unwise assumptions. In studies involving plastic surfaces, it must

be remembered that melting and/or ablating may take place at high

speeds. The APL program does not handle the changes in state and

geometry that may thus ensue. Therefore, computed data which may

look good on surface, may be useless if above phenomena had taken

place.
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Another condition that one must exercise care with is choosing

adequately thin elements for the representation of aerodynamic surfaces

made of fiberglass phenolics or other low conductive materials. The

temperature 6btained for the surface element is used as the wall tempera-

ture in the computation of TV. In turn, this is used in the computation

of h. For the case of low conductive materials, when the surface element

is thick, then T will be smaller during the ascent of a missile than ifw

the surface element were made thin because of the larger volume. In turn,

the coefficient of convective heat transfer will be larger. Thus, over

a finite missile ascending period of time, more heat will be supplied to

the thicker surface element. Furthermore, since the overall thickness of

the structure which is receiving aerodynamic heating is a fixed dimension,

the inner element layers will eventually have to absorb the excessive heat

supplied to the surface element. Thus, not only will the temperature of

the surface element be in error, but also the temperatures of all inner

elements. If the conductivity of the material- is large as in the case

of metals, then the above will not nearly be as serious. In conclusion,

for temperature gradient supporting materials, generous usage of break-up

into layers should be made in the mathematical model.
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